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Abstract

This paper searches for better solutions of the robot locomotion problem. Our method is
based on the well established HyperNEAT algorithm, where we exchange NEAT with genetic
programming. We present the resulting algorithm, construct proof-of-concept experiments
and show experimental results. In the end we offer possible future improvements to HyperGP
and share the implemented testing framework with the community.

Abstrakt

Tato práce se zaměřuje na hledání lepších řešení problému robotické chůze. Naše metoda
je založena na známém algoritmu HyperNEAT, kde vyměníme NEAT za genetické pro-
gramování. Představíme výsledný algoritmus, provedeme experimenty a ukážeme jejich
výsledky. Nakonec navrhneme možná vylepšení algoritmu HyperGP a uvolníme náš testovací
framework komunitě.
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Chapter 1

Introduction

The humans have always been intrigued by the tools their ancestors built. Many of us
devote our lives to building upon and improving those tools. When the industrial revolution
brought the accelerated rate of inventions, the future seemed bright for the human kind.
With the use of light bulbs, electric machines and combustion engines, inventors could speed
up their work and many improvements have just kept coming.

The middle of 20th century brought the greatest invention of all - the computer. Under
the spotlight pointed at the unbelievably fast processing machine, the average human could
start feeling less brilliant, or even insufficient for the modern age. The world’s fastest com-
puter can now compute over 1015 floating point operations per second [34].

Even though computers have been beating us in many tasks, such as playing chess, or-
ganizing data and communication, humans and most animals still have been much more
successful than the computers in one little ability - coordinated locomotion. Walking is so
natural to us that we do not consider it particularly difficult and that is why this one weak-
ness of computers is the major objective of our work.

We will try to develop an automated system which would enable robots to learn and
perform forward locomotion. This system should be independent of the robot’s size and
topology. Additionally, in order to empower the system to solve various problems, the influ-
ence of the experimenter should be as low as possible.

Our approach is based on the HyperNEAT algorithm, originally developed by Ken Stan-
ley and his team [32]. HyperNEAT is a neuroevolutionary method for optimizing synaptic
weights in a neural network. It uses generative encoding from genotype to phenotype that
enables it to encode symmetries, repetitions and other underlying motifs. Our approach
uses a modification of HyperNEAT, called HyperGP, which replaces the original neuroevo-
lutionary algorithm NEAT for a simpler one, genetic programming (GP). This exchange has
proved to improve results in certain simple tasks [6] and our goal is to apply HyperGP to a
more complex problem - robot locomotion.

1



CHAPTER 1. INTRODUCTION 2

A proof-of-concept experiment will be performed, necessary frameworks will be imple-
mented from scratch. With the frameworks in place, we hope to find the strengths and
weaknesses of HyperGP through thorough testing. Suggested improvements to the HyperGP
algorithm will be presented, showing the direction of possible future research.

The first chapter encloses this introduction and explains, what the motivations and the
goals of this work are. We discuss the robot locomotion problem and known solutions to it
in Chapter 2. The HyperNEAT algorithm is discussed in Chapter 3, together with a quick
overview of Genetic Programming. The used robotic simulator is described in Chapter 4.
Chapter 5 brings the suggested approach, combining HyperNEAT with Genetic Program-
ming. The actual implementation of the frameworks and experiments is thoroughly presented
in Chapter 6, showing off experimental results and encountered problems in the following
chapter. The last chapter concludes the paper and presents suggestions for future work,
followed by appendices containing important terms and a detailed setup of the experiments.



Chapter 2

Robot locomotion problem and
existing methods

Today’s robots are able to use from tens to hundreds of independent actuators and sen-
sors. The robotic system needs to process the input information in real time and compute
the next state for the outputs. This function, transforming the information about the cur-
rent state of the environment into a new, desired state, thus has many dimensions.

This is the main reason of us using artificial neural networks (ANNs - or just neural net-
works, for short) for this task. Neural networks are generally capable of solving complicated
tasks. The problem faced here is finding the right topology and parameters of the optimal
neural network. Many approaches have been suggested and in the rest of this chapter we
will discuss some of them.

2.1 EANT2 - Evolutionary Acquisition of Neural Topologies,
Version 2

This particular method is described in detail in [28], where it is also compared to the
NEAT method on a visual servoing task. This approach is different to other methods by
its separated evolution of the structure and the parameters of the neural network. Which
means that two structures of a network are only compared, when they both have their opti-
mal parameters. The optimization is done by the Covariance Matrix Adaptation Evolution
Strategy (CMA-ES) and has yielded better results that NEAT on certain tasks [28]. The
reason we could not use this method is the large dependence on a group of preset parameters
that have to be found in advance by the designer, clashing with our goal to minimize the
human influence.

2.2 CPG - Complex motor patter generation (Rodney)

The second approach that also utilizes a separated evolution is called Complex motor
Pattern Generation (CPG) [19]. The evolution is separated into two stages. First, a simple

3



CHAPTER 2. ROBOT LOCOMOTION PROBLEM AND EXISTING METHODS 4

neural network that controls only one leg of a robot (which works like an oscillator) is evolved
to some extent. This base oscillator is then copied across the robot to control every single
leg. In the second stage, another network controlling the interconnections between all the
leg oscillators is evolved to synchronize all the movements into a coordinated gait. A six
leg test robot called Rodney was used in [19] to perform testing. The main advantages of
this approach are speed and convergence, since the precise goal of the first stage (a decent
one-leg oscillator) is clearly specified before the process starts. The purpose of the second
stage is to synchronize these oscillators after they are copied into all other legs. Although
useful for some purposes, this is a huge disadvantage for us, since a strong hand of a designer
is needed to setup the evolution parameters. Thus this approach cannot be used in our case
for its lack of generality.

2.3 HyperNEAT - Neuro-Evolution of Augmented Topologies
employing hypercube-based encoding

Both the approaches mentioned above suffer from one insufficiency: they use direct en-
coding. The problem with direct encoding is that the genotype (genetic material of the
robot) and the phenotype (a structure controlling the actual robot) are mapped directly to
each other, making the individuals very sensitive to genetic operators such as mutation and
crossover. How this problem is approached in HyperNEAT and consequently in HyperGP is
explained in the following chapter.



Chapter 3

HyperNEAT and Genetic
Programming

This chapter describes HyperNEAT in detail, explaining its advantages over methods
mentioned in the previous chapter. First we look at the advantage of indirect over direct en-
coding, providing an example of how genetic operators may act as a destructive, rather than
a constructive force on directly-mapped algorithms. Both the genotype and the phenotype
of HyperNEAT are described in detail in the second part of the chapter.

3.1 Generative encoding

When trying to show why indirect encoding can be more powerful, let’s look at an analogy
from [9]. Imagine trying to evolve a four-legged table to have some desired properties. If
represented by direct encoding, our genotype would have to contain the following piece of
information

• leg 1 has a height of 50cm

• leg 2 has a height of 50cm

• leg 3 has a height of 50cm

• leg 4 has a height of 50cm

Thus our table’s height is around 50cm. However, what if the genetic operator wanted to
try a different height? It could set leg 1 ’s height to 10cm, but that would make the table
very unstable. In order to successfully reduce the height of the table, the same modifica-
tion would have to be applied four times in different places of the genotype. Of course, a
stochastic operator such as the genetic programming would take a long time to discover that
in order to go from one stable solution to another, it is required to apply the same modi-
fication four times. With direct encoding, the genotype tells us what the phenotype looks like.

An attempt to solve this problem with indirect encoding produces better results. With
one type of indirect encoding called generative encoding, the genotype works like a ’manual’

5



CHAPTER 3. HYPERNEAT AND GENETIC PROGRAMMING 6

for us to construct the phenotype. Thus, with our table example, the genotype contains the
following information:

• a leg X has a height of 50cm

• leg 1 is the same as leg X

• leg 2 is the same as leg X

• leg 3 is the same as leg X

• leg 4 is the same as leg X

In the case of generative encoding, changing the height of the table is a matter of a single
modification: of leg X in this example. Thus the genetic operators can search in the solution
space, with the assertion that all the possible tables are stable. With generative encoding,
the genotype tells us how to construct the phenotype.

All sorts of generative encodings can be found in nature. The human genome con-
tains about 20,000 (20 thousand) genes [27]. However, the human body contains around
50,000,000,000,000 (50 trillion) cells [15]. Just from the numbers, we can see that some kind
of generation has to transform the blueprint (the human genome) into an actual human body
containing trillions of cells. Another example can be discovered very easily: human fingers
and toes. Our DNA does not contain 20 distinct copies of all our slightly altered fingers
and toes - that would be very inefficient. In fact, only an original description of a finger is
saved and then the modifications of that original model are used to get all fingers found on
our hands. In the same matter as with the table, if evolution wanted to strip us of fingers
altogether, only one modification to the original would suffice.

This important disadvantage of direct encoding significantly increases the time needed
for the evolution to find symmetries and similarities. Crossover and mutation, used with ge-
netic algorithms, can severely damage genotypes that are directly mapped to its phenotype
(as with the table example). This might explain why most evolutionary methods (like those
mentioned in Section 2) try to somehow overcome this problem by splitting the evolution
into stages or not using crossover at all [28].

3.2 Genetic operators

The sensitivity of genotypes to genetic operators forced researchers to find a way in which
they could keep mutation and crossover in the game and at the same time enable the evo-
lution to explore all the possibilities of solutions without destroying the good ones. A good
application of a generative encoding was necessary.

One particular method seems to be able to pass the mentioned restrictions. It was orig-
inally developed by Ken Stanley and his team and is called HyperNEAT [32]. It was shown
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that this method can have very good results in similar tasks to ours [32, 9]. The main
strength of this method is its capability to exploit symmetries, repeating motifs and other
underlying principles.

The search for a neural network that could solve the task is approached differently than
usual in HyperNEAT. The target neural network is represented by a grid of neurons. Weights
between all neurons are not directly encoded in the individual, but instead are computed
by a separate neural network-like structure called CPPN (Compositional Pattern Producing
Network) (Figure 3.2).

The target neural network with its generated weights is called the substrate. In the orig-
inal HyperNEAT, the CPPN is a neural network-like object - with the difference in neuron
activation functions. The individual solution is then represented by both its CPPN (geno-
type) and its substrate (phenotype). The CPPN is the cause of HyperNEAT’s capabilities
- finding symmetries and other underlying motifs. Since the CPPN is a multi-input func-
tion (multi-dimensional), it in fact encodes a hyper cube. Thus the origin of ’hyper’ in
HyperNEAT.

The NEAT (Neuro-Evolution of Augmented Topologies) part of the method’s name is a
very sophisticated neuroevolution method that can deal with premature convergence (pre-
serves diversity) and gradual complexity of solutions. In the case of HyperNEAT, the so-
lutions are not the neural networks (substrates) themselves, but the CPPNs that generate
them. The NEAT is thus applied on the CPPNs.

3.3 Phenotype: substrate

The phenotype in the case of HyperNEAT is a regular neural network. Usually the net-
work is organized as a grid so that the neurons can be uniquely identified by their position
in the grid. The relative position of each output neuron in the grid should correspond to the
relative position of the actuator in the robot (Figure 3.1).

During the run of the robot, the input neurons receive values from its sensors and the
output neurons compute the values that are sent to its actuators. The grid can be filled with
neurons in the same fashion but at a higher resolution again (without modifying the CPPN
at all), so that the grid remains the same physical size. This enables easy scaling of the
network, since one CPPN can generate a different substrate (with very similar properties)
at each resolution. This ability is called scaling and is one of the features of HyperNEAT.
It is discussed in detail in [32], but is beyond the range of this work.

3.4 Genotype: CPPN

The CPPN is a network closely resembling a neural network. If we depict this network as
a tree, we see that the nodes can employ any function (sigmoid, sine, absolute value, square,
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Figure 3.1: Relationship of the substrate and the robot topology

square root etc) and the leaves are input variables into the network. The output node (the
root) just carries the result of the computations coming from inside of the tree.

The input variables, in the case of HyperNEAT, are the coordinates of the chosen neu-
rons in the substrate and the output is the synaptic weight value between those neurons.
This way, the substrate is constructed by querying its CPPN for weight values between all
neurons in the substrate (Figure 3.2). When all the neurons have all the synaptic weights
between each other determined, the substrate is ready for use.

The choice of the neuron activation functions enables the CPPN to discover correspond-
ing spatial properties in the robot. For instance, absolute value of x can encode Y-axis
symmetry, sine of x can encode repeating parts along the robot etc.

The potential of this encoding has been shown in experiments [32, 9] where the CPPN can
in fact encode symmetries and other regularities that could hardly be present if direct encod-
ing was used. This way, through evolution, the discovered symmetries cause the network to
realize that it just copies one leg multiple times into the robot body. This is something that
in previous methods [28, 19, 14] had to be explicitly enforced on the evolution by separating
it into stages [19, 14] or using inner optimization loops [28].

With this approach, the change in the genotype (CPPN) caused by genetic operators
such as mutation and crossover does not have to be destructive (like in the case of direct
encoding), because a change to one table leg is propagated to all other legs (Section 3.1).
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Figure 3.2: Hypercube encoding example

3.5 Genetic Programming (GP)

Genetic programming (GP) is an evolutionary algorithm-based method for creating com-
puter programs [16]. It is a special kind of a evolutionary algorithm, where each individual
is represented by a tree of functions and terminals.

The genetic operators commonly used in genetic algorithm methods such as mutation
and crossover are also present in GP. The mutation operator takes a random tree node and
replaces it with a newly generated subtree. The crossover (one point crossover), selects a
node in each of the two trees coming into the crossover operator and exchanges the subtrees
originating from those selected points.

The selection in GP is based on the fitness value (measure of the quality of the solution)
and can be done through methods like the Roulette wheel, Stochastic Universal Sampling,
Tournament Selection or Remainder Stochastic Sampling.



Chapter 4

Robotic simulator Sim

We will use the following robotic simulator for the fitness acquisition and individual
robot behavior visualization. This robotic simulator Sim was created at the Czech Technical
University by Daniel Fiser and Vojta Vonasek [31]. The Sim combines the physics simulator
Open Dynamics Engine [24] with the graphics engine OpenSceneGraph [26].

The Sim can be used in both non-visual and visual mode. The non-visual is practical
for fast robot evaluations during the experiment run and the visual one, obviously, for con-
firmation of desired behavior by the experimenter. Usually this confirmation is undertaken
after the experiment is over and the best individual from the evolved population is loaded
into the simulator and shown to the experimenter.

Sim comes with a wide variety of input options, although for our purposes, the SSSA
modular robot input turned out to be the most frictionless approach. SSSA robots are the
robots used with the SYMBRION/REPLICATOR projects, thoroughly described and used
in [7]. In our simplified simulator, one SSSA robot consists of a joint connecting the body
(cube) and a moving flat connection panel (Figure 4.1). The panel can move in one degree
of freedom around the body in the range of [−π

2 ,
π
2 ]. What we refer to as a robot in this

work, however, is a set of connected SSSA robots, together forming a structure with many
degrees of freedom (Figure 4.2).

Deeper description of the SSSA robots is not included in this work, because they were
just used as a tool of evaluating the efectivness of the HyperGP algorithm implemented in
our framework.

The input of the simulator consists of setting up the simulation parameters (start and
stop times, sample time, physics constants) and creating the robot body in the simulator.
The creation of the robot body is done through describing the positions and rotations of
each SSSA body. The simulator then attaches all the bodies that can be attached (are next
to each other). This way we create the robot. Each SSSA body then gets registered to the
simulator for updates.

10
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Figure 4.1: One SSSA robot

Figure 4.2: Many SSSA pieces forming what we refer to as a robot

Later, during the simulation, an object containing the phenotype outputs for all time
steps is queried for these values. Each of the SSSA bodies queries our object independently.
We answer these queries by identifying the source SSSA body by its relative position in the
whole robot and looking up the value (desired rotation angle) which is set as the desired
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rotation of the SSSA body.

The simulator takes care of moving the SSSA body into the desired rotation over time.
It does so by taking the difference between the current and desired rotations and multiplying
it by a gain constant to get the desired angular velocity. The default of the simulator was
gain = −0.5, for our experiments we increased it to gain = −1.0 to get speedier movements.

The position of the center SSSA body is computed at the end of the simulation. The
difference of the end position and the start position (or position at some delayed time) is
considered the output of the simulator. We later compute fitness from this translation vector.



Chapter 5

Proposed HyperGP approach

Our approach consists of modifying the HyperNEAT algorithm into HyperGP and adding
a bloat control method. Both changes are described in this chapter.

5.1 HyperGP

After researching multiple neuroevolution methods, the HyperNEAT approach seemed
best suited for our task. The ability to encode symmetries and spacial motifs of the robot
could be a great advantage in problems such as robot locomotion. We chose to replace NEAT
as the evolutionary method with genetic programming (GP), though, for its simplicity and
suggested superiority in certain cases [6]. This change can be seen in Figure 5.1.

Figure 5.1 shows, how our proposed algorithm could be designed with a consideration of
modularity. The first block on the left symbolizes the process which tweaks the population
in each iteration - in our case GP, in case of HyperNEAT it was the NEAT algorithm. The
middle block holds the genotype-phenotype mapping used. Even though we are using hyper-
encoding in this paper, some kind of direct encoding could also be used for different tasks.
The important part is that only the middle block would need to be changed. The block
all the way on the right symbolizes the fitness evaluator. In our case a software simulator
is used, but it could also be a module working in the physical world which would evaluate
fitness in real time on real robots and feed the data back to the algorithm.

This exchange of NEAT for GP has been done before in [6]. It requires us to reconsider
the genotype (CPPN), however. Instead of using a Compositional Pattern Producing Net-
work, GP uses functions as genotypes, thus the genotype is called a Compositional Pattern
Producing Function (CPPF) [6].

The strengths and advantages of indirect encoding for similar tasks have been shown
several times [32, 9, 6]. With the use of indirect encoding through hyper-encoding and the
genetic programming as the evolutionary method we hope to develop a process that would
be able, together with an appropriate robotic simulator, to find some good solutions for the

13
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Hyper 
decode SimulatorGPHyperGP:

HyperNEAT: Hyper 
decode SimulatorNEAT

Figure 5.1: HyperGP derived from HyperNEAT

problem. The process is depicted in Figure 5.2.

5.1.1 Initial population

The process starts with a randomly generated population of small CPPFs (tree-based
functions which generate the weights of the neural network). The random initialization can
employ methods such as Full, Grow or Ramped Half-and-Half.

5.1.2 Selection

The selection of individuals that are given a chance to reproduce can be performed
through Tournament, Roulette or any other selection methods.

5.1.3 Mutation

The selected individuals are mutated with a certain small probability in the following
matter. A node is chosen in the tree. The subtree originating from that node is removed. A
new, randomly generated subtree is placed onto the node instead.

5.1.4 Recombination

With a certain probability, two selected individuals can recombine in the following matter.
A randomly chosen node is found in the first tree. A randomly chosen node is found in the
second tree. The subtrees, originating from those two points are exchanged between the
trees. Then, both trees are placed into a new population.
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Figure 5.2: GP evolution

5.1.5 Evaluation

The fitness evaluation is performed in two phases. The first phase decodes the CPPF into
its substrate (a neural network controlling the robot). In the second phase, each individual
now possessing both its genotype (CPPF) and phenotype (neural network), is put into the
simulator for fitness computation. The fitness value can be defined as the forward traveled
distance of the simulated robot, the integrated walked path or any other desired behavior.

5.1.6 Termination condition

Since we cannot simulate natural open ended evolution, we need to set a stopping point.
The first condition to be satisfied stops the process. One condition is a maximum number of
tried generations, another is a goal fitness value, which if any individual in the population
possesses, causes the evolution to stop.

5.2 Bloat control

A peculiar phenomenon exists in the genetic programming approach. Sometime during
the evolution, genetic operators might cause individuals to start developing larger trees with-
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out increasing their fitness value. This phenomenon is called bloat.

Several hypotheses for the cause of bloat are outlined in [30] and in our paper they are
not going to be discussed. The focus here will be on some antidote to bloat. The one which
is employed in our approach is proposed in [30] by Silva and is called Dynamic Limits. Two
limits are mentioned - depth and size (we only focus on the tree-based representation here).
Depth turned out to be a much better tuning parameter [30] which is why we will use it in
our process as well (Dynamic Maximum Tree Depth).

The method is rather simple and elegant. Consider the depth of the tree to be our lim-
iting parameter (the Limit). First, the initial population is created with a maximum depth
of e.g. 4. Then all individuals acquire their fitness values and the depth of the most fit
individual becomes the initial value of the Limit. After that, whenever a new individual
is created through a genetic algorithm whose depth is higher than the current Limit, it is
allowed into the new population only if its fitness is higher than the fitness of the previously
most fit individual. If the processed individual does not pass this test, one of its parents is
copied into the new population instead. In the case of its depth being equal to or lower than
the Limit, it is always allowed into the new population.

This way, individuals in the population only become larger (deeper) if their fitness is also
higher. Experiments [30] have shown that this simple filter can prevent bloat from enlarging
the individuals without any increase in fitness.

5.2.1 Heavy variant

An extension is also proposed in [30] called heavy variant of a Dynamic Limit. The
original Dynamic Limit only increased over time - it never decreased. With the heavy
variant, though, the Limit also decreases if the depth of the most fit individual suddenly
gets lower. This creates a complication: what happens with the individuals that were under
the Limit before, but got above it after the decrease? They become illegals.

5.2.2 Handling illegals

If a newly created individual has illegal parents, the Limit for that individual becomes
the depth of the larger parent. This way, potentially good solutions will not be removed
from the population but at the same time they will not have a chance to cause bloat. The
minimum value of the limit is the maximum allowed depth during initialization.

5.2.3 Very Heavy variant

The very heavy variant is allowed to fall down even below the maximum allowed depth
during initialization. With the Dynamic Limits proposed by [30], we hope to be able to pre-
vent bloat from unnecessarily complexifying our individuals without increasing their fitness
value.



Chapter 6

Implementation

In order to verify the efficiency of the proposed solutions, the whole algorithm needed to
be implemented as a computer program. The focus was mainly on:

• maximizing computational speed

• high expandability of the program in the future

• automatic support of multi-core processors

• low memory requirements

• at least some platform independence

These objectives fundamentally affected the choice of the programming language, plat-
form and software design.

6.1 Programming environment

6.1.1 Programming language

Due to the need of both low level and object-oriented features, C++ was chosen as the
programming language that could satisfy all the mentioned goals. There were other candi-
date languages, but C++ was the best choice for the following reasons.

The other obvious choice would be Java, as the world’s most popular application pro-
gramming language [29]. Although, some sources claim that C++ should be faster than
Java by principle (Java runs on a virtual machine) [13]. Certain benchmarks find it difficult
to compare languages, since each is better at a different task [8]. Also, Java is much more
platform independent than C++. However, we did not choose Java for its lack of user mem-
ory control (Java uses runtime garbage collection) in addition to the speed disadvantages.

Another option was Objective-C, a C-based, objective-oriented language in development
by Apple, Inc. The platform dependence on the Darwin architecture (poor support on Linux
machines) made us not really consider it, even though the choice of the compiler later locked
us down for the near future.

17
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6.1.2 Compiler

Due to the fact that most of the implementation took place on a MacBook Pro, running
OS X 10.8 and Xcode as the development environment, we chose the Clang/LLVM compiler
[20] instead of the more common GCC compiler. Some sources claim that Clang/LLVM is
faster in compilation, more efficient and produces better binaries of C++ code [17].

Clang/LLVM even uses its own implementation of the C++ standard library (libc++).
Unfortunately, tested release versions are only available for the Darwin architecture meaning
that compiling at Linux machines would be unreliable at this time (the libc++ library for
Linux machines is in the experimental stage at the moment) [21].

Trying to make the code future-proof, we wanted to use the latest C++11 language
standard. Clang/LLVM was build to be feature-complete and designed for C++11 from the
beginning [20].

6.1.3 Platform

Programming on Apple’s platform, there were many advantages in using the native com-
piler with C++. The main one is the support of Grand Central Dispatch (GCD), a multi-
thread multi-core management system, available for the C++ language [4].

The advantage of using GCD instead of hard-coding POSIX threads is that only indi-
vidual blocks of code are submitted to GCD for asynchronous processing. GCD takes care
of creating and destroying threads and is able to use all available processor cores. This
eliminates the need to know the number of available cores on the target machine. GCD just
uses them all without the programmer having to program anything extra [4].

All these features are in development for the Linux platform, as well. However, at the
time of this writing, most of them are still in experimental stage and are not recommended
to be used for serious work.

The choice of IDE (Integrated Development Environment) was easy. Having worked
with Xcode (by Apple, Inc.) [5] for almost two years and knowing that Xcode was built for
Objective-C and C++ development, no other IDE was considered. Shell and Python script
coding was done in Sublime Text 2 [3] and MATLAB scripts in the MATLAB app [23].

6.2 The cic framework

In order to successfully test the proposed form of HyperGP algorithm, a solid implemen-
tation had to be proposed. Keeping the future modifications in mind, a framework named
cic was developed. Since we might want to test different algorithms than GP or use different
encoding than the hypercube-based, generic interfaces and types had to be defined in advance.
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The best way of to present any population-based algorithm is, for our purpose, to look at
the population as one object and the algorithm as a block modifying that object. Also,
we needed a way to work with the particular individuals, as the items contained by the
population.

Starting with the most abstract interfaces, these main three types of objects were defined

• Individual

• Population

• Population Modifier

All the particular types brought in with particular algorithms and processes have to in-
herit from either of these three types. That is how cic was designed. Figure 6.1 shows how
two particular algorithms use this sort of design to define all needed types.

Figure 6.1: cic types hierarchy with symreg and hyperGP

As it was mentioned, the actual implementation of the cic framework did not target
only one genetic algorithm-based experiment. Since the HyperGP experiment itself was not
trivial to program and test, another simpler experiment was used as a proof-of-concept for
the framework to help debug it before HyperGP would run in it.

A generic symbolic regression experiment was used first. The biggest advantage of this
approach was that about a half of the codebase was shared between symbolic regression and
HyperGP.
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6.2.1 Experiment: Symbolic Regression - cic::genetic::symreg

The goal of symbolic regression is finding a function that best satisfies certain constraints.
Genetic, population-based approach was used here in the following matter (also depicted in
Figure 6.2):

Figure 6.2: symreg workings in cic

In our case first a function was selected and n equidistant points were chosen in a range
rmin, rmax. These worked as a reference set of points for the simulator. Each evaluated
function was sampled in the same matter and the sum of absolute differences between it and
the reference of all points was computed. The negative value of that sum was used as the
fitness value (since we used the higher-fitness-is-better approach).

If x is a vector of points computed by a tested function and r is the vector of points
generated by our reference function, then fitness of the i-th individual fi was computed as

ei =
M∑
k=1

|xk − rk| (6.1)

fi = −ei (6.2)

where fi is the fitness of the i-th individual.

The symreg implementation of the symbolic regression experiment was very helpful with
debugging of the framework. The framework ran only symreg for a couple of weeks during the
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development and still works as a benchmark experiment. During that time, support for mul-
tithreaded computing was added (with the use of GCD, Section 6.1.3), MATLAB interface
was developed (Section 6.4.2) and XML serializer/parser was implemented (Section 6.4.1).

6.2.2 Experiment: HyperGP - cic::genetic::hyperGP

The implementation hyperGP of the HyperGP algorithm needed a couple of new features
in addition to what we developed for symreg. The main differences were:

• Phenotype: recurrent neural network (RNN) instead of a tree

• Hypercube Encoding: way to translate a genotype (function) to a phenotype (RNN)

• Simulator: interface between hyperGP and sim

• Simulator: fitness was computed from the translation vector of the robot

• Bloat Control: added to the cycle

Figure 6.3 shows the logical setup of HyperGP blocks in cic.

Figure 6.3: HyperGP workings in cic

6.3 cic featured classes

The original goal of the cic framework implementation was to use as little 3rd party code
as possible. Obviously, the less dependencies that the user has to install in advance, the
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better. In the end, several common libraries (Section 6.4) were used for certain purposes,
but the actual working of the algorithm does not depend on any of them (the libraries are
mainly used as I/O tools).

The implementation of the core pieces is discussed in the rest of this chapter.

6.3.1 cic::genetic::Individual

Since all the algorithmic work is achieved by population modifiers, in cic the Individual
class only works as data storage of the particular gene. The genotype, phenotype, fitness
value are stored directly in the Individual (Figure 6.4). Optionally, the experiment can use
Individual’s pointer to its parent - which is taken care of by genetic operators. One more
key-value storage is contained in every Individual. Population modifiers can use that storage
to assign attributes to the Individual (e.g. Bloat Control needs to mark Individuals illegal
in certain cases).

Figure 6.4: cic::Individual

6.3.2 cic::genetic::Population

The Population class is a container of Individuals. Support of iterators has been added
for easier enumeration of Individuals. An integer marking the Population’s iteration number
works as its identifier (Figure 6.5). Individuals are stored by making a copy of their shared
pointer. This way, when the last owner deletes the pointer, the Individual gets deleted from
memory automatically. A copy of the Population is exported to a XML file during and at the
end of each experiment and can be again loaded as the starting point for a new experiment.

6.3.3 cic::tree::Tree

The genotype in the HyperGP experiment was a multidimensional (hypercubic) function.
Functions can be easily digitally represented in the form of a binary tree. In order to in-
crease the speed of the tree result computation, decision was made to save more information
into the tree nodes at the cost of memory consumption. A proprietary implementation was
needed and one was proposed and implemented.
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Figure 6.5: cic::Population

6.3.3.1 Node

The tree is an expression tree. Node can be either a function (blue) or a terminal (red)
as shown in Figure 6.6. Functions can have one or two arguments which are represented by
child nodes. Terminals only hold information about the variable or the constant they carry.
An example of such an organization can be seen in Figure 6.6. The resulting expression of
that tree is

f(x, y) = (x+ 0.57)sin(cos(y)) (6.3)

With this pattern, each node represents the subtree underneath it. The information
about the subtree node count and depth are accessible right away, obliterating the need to
compute it again every time such information is requested. Especially in cases of very deep
trees, such computations could add very expensive milliseconds to the computation time,
since both the depth and node count computation has an exponential complexity.

When subtrees are exchanged between two trees, only a minor update of registering
the subtree into its new tree propagates that information to the root node. These actions
have linear complexity, thus once setup, our tree implementation should be independent of
the absolute tree depth - and computational requirements should scale linearly with this
parameter.

6.3.3.2 Tree

Understanding the above mentioned design pattern of informed nodes, the tree object
only works as a public interface and a wrapper for the root node. Hiding the inside workings,
user of the cic::tree::Tree class is only presented with sensible information getters (total tree
depth, total tree node count, etc.).

Figure 6.7 shows what extra information is saved in the Tree class.

6.3.4 Tree Generator

Another crucial problem to tackle was the way of creating the initial individuals. Indi-
viduals were represented by an expression tree (genotype), thus redirecting the problem of
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Figure 6.6: Example nodes connected into a tree

Figure 6.7: Tree types hierarchy

individual generation to tree generation. The random tree generation is important in several
parts of the experiment:

• initial trees of the initial population

• subtree generation for the mutation operator

• creation of new individuals after some get removed from the population (e.g. bloat
control)

There are several known and used methods, which are fairly simple, such as Grow, Full
and Ramped Half-and-Half [16]. In addition, another one, called PTC1 [22] was imple-
mented to be able to control the generated trees’ parameters more precisely.
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For the scope of the following methods, A is the set of all available nodes, T the set of
all available terminal nodes and F the set of all the function nodes. The maximum depth is
denoted dmax.

6.3.4.1 Grow

Grow is one of the most efficient and used tree generation methods. The only thing Grow
guarantees about the generated tree set is that all the trees will have a depth between 0 and
dmax.

Implemented as a recursive algorithm, Grow chooses to use a terminal node when reach-
ing the maximum depth dmax and a terminal or function node otherwise. Below is the
pseudo-code of Grow.

1: function Grow(dmax)
2: Node n← 0
3: if dmax > 1 then
4: n← randomNode(A)
5: else
6: n← randomNode(T )
7: end if
8: for all children(n) do
9: child ← Grow(dmax − 1)

10: end for
11: return n
12: end function

6.3.4.2 Full

As opposed to Grow, Full can guarantee the precise depth of all generated trees - and
that is the maximum possible depth dmax. Full achieves that by choosing a terminal node
when reaching the maximum depth dmax and a function node otherwise.

Below is the pseudo-code for Full. Note the only difference to Grow in line 4, where Full
chooses from the set of just the function nodes (F ), but Grow takes any type of node (A).

1: function Grow(dmax)
2: Node n← 0
3: if dmax > 1 then
4: n← randomNode(F )
5: else
6: n← randomNode(T )
7: end if
8: for all children(n) do
9: child ← Grow(dmax − 1)
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10: end for
11: return n
12: end function

6.3.4.3 Ramped Half-and-Half

Grow is great for creating a population diverse in depth, whereas Full guarantees that
all trees will be as full as possible. However, neither of these methods works perfectly for
all applications, which is why a combination of these two, called Ramped Half-and-Half has
been the most preferable. It uses Grow and Full as described above in the following matter:
half of the population is created with Grow; the other half is created by applying Full with a
small maximum depth (0, 1, 2 or any other) gradually ramping up to dmax. Equal number (if
possible) of the half population devoted to Full gets created with different maximum depths
applied to Full.

This particular method enables the population to be diverse both in depth and in used
nodes. Ramped Half-and-Half’s ratio of effectiveness to simplicity makes it a great candidate
for our application.

6.3.4.4 PTC1

Trying to expand the theoretical boundaries of our tree generator, one more generation
method was implemented. Described in [22], PTC1 (Probabilistic Tree-Creation) provides
much more control over the generated tree set. Being able to guarantee the average tree size,
maximum depth and even the occurrence probability of each node provides us with much
more power.

The gist of PTC1 is that it is a modified version of the Grow generation method, men-
tioned above. The input data to PTC1 is

• expected (average) tree size Etree

• arity bf for each function node f ∈ F

• probability qf for each function node f ∈ F

• probability qt for each terminal node t ∈ T

• maximum depth dmax

The algorithm first computes p, the probability of choosing a function node. This prob-
ability is constant for the whole run, so it needs to be computed only once before the start
of the generation.

p =
1− 1

Etree∑
f∈F

qfbn
(6.4)

Once p is computed, the tree generation runs as follows
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1: Tree ← PTC1(0)
2: function PTC1(d)
3: if d == dmax then
4: return terminal from T (by qt probabilities)
5: else
6: if chose f from A with probability p then
7: choose f ∈ F (by qf probabilities)
8: for all arguments of f do argument ← PTC1(d+ 1)
9: end for

10: return f
11: else
12: return terminal from T (by qt probabilities)
13: end if
14: end if
15: end function

6.3.5 cic::nn::Network

In the HyperGP algorithm, the phenotype of each individual is a neural network. This
neural network is the manifestation of the genotype (function), since the synaptic weights
between neurons are computed by the genotype’s function. The problem faced with a regular
neural network is the lack of memory-like behavior. In the HyperGP simulator, a concept
of time needs to be present in the genotype. To solve this issue, a recurrent neural network
was used. Recurrent types can simulate discrete time systems through synapses not only
going from input to hidden (1) layer and hidden to output (2), but also hidden to hidden
(3), output to output (4) and even output to hidden (5). And all synapses not going in the
forward direction (types 3, 4, 5) need to be evaluated with one time step delay (Figure 6.8).

In other words, the network will hold internal values from the past and take them into
account when computing the future outputs. This is exactly what is needed to avoid bringing
time as an extra input into the network. In our particular implementation, every neuron
saves into memory its output value and the current time. When the network outputs are
being computed and this information is queried, the neuron looks into its memory first and
then if it does not find the value for the current time, just computes it and saves it again.
This way, we - once again - sacrifice a piece of memory for faster evaluation.

The spatial setup of the network needs to conform to the robot spatial architecture (as
explained in Section 3.3). An example of such a network can be seen in Figure 6.9. On
the other hand, neural networks are generally approached from a layer-focused point of view
(Figure 6.10). The layer approach also makes clearer why some synapses transfer signal
immediately (forward going) and some need to be one time step delayed (all other).
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Figure 6.8: Neural network - synapsis delay by type

Figure 6.9: Recurrent neural network example - spacial view
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Figure 6.10: Recurrent neural network example - layer view

6.4 Tools and libraries

There was no need to re-implement certain tools for our needs, such as the robotic
simulator and a simple plotting tool. Several common libraries and tools were used for those
purposes.

6.4.1 libxml2

Any computations that take place in the cic program are immediately lost with the ter-
mination of the program. That is the reason why a decent way of saving results, individuals
and settings to a permanent storage was needed. One of the most popular choices was XML
(Extensible Markup Language) [33, 25]. The great advantage of saving data to XML, instead
of a binary file, for example, is that it is human readable. This way, even after the XML
has been exported from the program to the hard drive, we can read and modify the file by
hand. These modifications do not corrupt the file content, meaning it can be again loaded
into the program and used as a starting point for further experiments.

In the search for a simple XML C++ parser library the winner ended up being libxml2,
because it is very simple, robust and already present on every Mac (thus eliminating the
need to install extra software) [35].

6.4.2 MATLAB

Average and maximum fitness, tree depth, size etc. are all the properties developed dur-
ing the runtime of the experiment and all this data is most helpful when seen in a plot of
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some sort. The MATLAB libraries, distributed with every copy of the MATLAB app seemed
appropriate for several reasons. For one, once the data is out of the experiment and in a
MATLAB file, further analysis can take place independently on the actual experiment. For
another, MATLAB libraries provide a simple way of opening and using a MATLAB instance
on the background, invoked and controller from C++ code.

The MATLAB integration in cic is very crude at its current state. All data is only
copied into a MATLAB instance, saved to a .mat file and optionally plotted right away
for the experimenter to see. Some simple inter-experiment data analysis is done by extra
MALTAB scripts that are distributed with the cic codebase.

6.4.3 Sim

The intention from the start was to use the robotic simulator developed by D. Fiser and
V. Vonasek at FEE, CTU in Prague for the SYMBRION/REPLICATOR projects [31]. The
main advantages over the other Robot 3D simulator are [2]

• lightweight

• can perform faster-than-real-time simulations

• supports running of several instances in several threads

The simulator setup consists of subclassing the Sim class and setting up the simulation
world parameters, creating the arena and creating the actual robot. Then another object is
assigned as the controller of the robot and the simulator queries the controller for updates
of the desired rotations of the robot legs regularly. In the case of HyperGP, a Neural Con-
troller was created to take care of translating the outputs of the neural network (substrate
- mentioned in Section 3.3) into desired rotation angles of the robot joints.

6.4.4 Other tools

Other software tools were crucial during the implementation phase. One was the package
manager for Mac called homebrew [12]. Homebrew was very useful during installation of
libraries and tools. Also, other than C++, Python was also used for automation of file
sorting (each experiment output 6 files and we ran hundreds of experiments).
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Testing

Rigorous experiments are crucial to every algorithm development. In order to either con-
firm or dismiss the efficiency of the HyperGP algorithm, we needed to prepare tests which
would cover as much parameter space as possible and inform us about HyperGP’s strengths
and weaknesses.

Fortunately, as part of the cic framework, a powerful experiment I/O and result record-
ing was implemented. This way, after each test run was over, the framework exported the
data in the xml format (settings, population with all individuals) and the statistics in the
mat format. This way, we wrote scripts to account for any number of repeating experiments
and statistically process the data in a matter of seconds.

This chapter first describes the setup of the experiments, the types of robots used and all
the different tested parameters. Then it proceeds to the experimental data recorded during
our testing phase.

Rendered videos of selected developed robots are present on the disclosed disk as well as
on the website of this project [11].

7.1 Experimental setup

7.1.1 Tested robot topologies

For the proof-of-concept testing, we created three types of robots. The goal was to test
several robot types, the way they are assembled, whether extra legs affect fitness and so on.
The types are

• Robot R0, 5 x 5 cubes, x-axis movement, Figure 4.2

• Type R1, 7 x 7 cubes, y-axis movement, Figure 7.1

• Type R2, 7 x 5 cubes, y-axis movement, Figure 7.2

31



CHAPTER 7. TESTING 32

7.1.2 Fitness

The search for the perfect fitness function for each robot was not trivial. We tried expo-
nential functions dependent on the distance traveled, mentioned in [9] and very sophisticated
measures like this. However, the added complexity did not bring any improvements, so we
used a very simple equation instead.

Each robot has a preferred axis of movement, so we used the distance traveled along
that axis as the base value of our fitness value. In addition, we also wanted to encourage
the robots to get their bodies up in the air, rather than crawl on the ground. And we were
mainly interested in the locomotion part of the simulation. Inspired by [7], we used the same
tweak where instead of measuring the traveled distance from the center of the arena ~x = ~0,
we wait 2 seconds and mark the robot’s position as the starting point. Robots tend to behave
differently in the first 2 seconds of the simulation (get-up procedures) and this enabled us
to filter them out efficiently. Our delayed-start position is marked ~s = (sx, sy, sz). At the
end of the simulation, we marked robot’s position ~t = (tx, ty, tz). The position of a robot is
defined as the position of its center cube. If r is the evaluated robot, p the preferred axis of
movement of the robot and f(r) the fitness function, the following form was used

f(r) = |tp − sp|+ (tz − sz) (7.1)

So the sum of the distance traveled in robot’s preferred direction and the difference in
elevation was recorded as fitness. Though very simple, it proved to be sufficient for our task.
It makes sense, because we used tournament selection in the genetic programming block.
Tournament selection only takes into account which fitness is higher or lower. If we used
some fitness-proportional selection method, such as Roulette selection, our fitness function
would need to be more sophisticated in order to produce good results.

7.2 Experimental results

Each experiment was run 10 times and the results presented here are the mean values
of all the experiments. We will be looking at several traits of the experiments. Namely at
the number of trees in a genotype, the effect of sample time on performance, whether robots
perform better with four or six legs and last but not least, which robot topology performed
best.

7.2.1 Genotype size: 1 vs. 4 trees

The reason of generalizing the genotype from a tree to a forest is explained in Sec-
tion 7.3.1. Here we look at how it affected the fitness and depth of the resulting individuals.

The comparison of robots R1 and R2 with their 1-tree versions versus their 4-tree versions
in Figure 7.4 shows the following. The extra number of trees did not have a positive effect
on the maximum fitness (Figure 7.4a). What more, in both robots, their 4-tree versions
were in fact inferior to their 1-tree versions. Also, their depth (sum of all genotype’s trees
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Figure 7.1: Robot R1

Figure 7.2: Robot R2

depths) is much greater, thus having a larger memory footprint (Figure 7.4b). Judging by
our experimental results, we would not recommend using more than one tree in the genotype.

On the other hand, we can claim that more trees do not help the fitness only based on our
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Figure 7.3: Robot R1 with 6 legs

presented experimental results. Our tests did not exceed 50 generations with populations
of 50 individuals. This is a small subset of the usual experimental data available, which
covers population behavior up to 300 generations. We will perform much longer-running
experiments in the future, but the current time constraints prevented us from having them
processed by this writing. Our claims are thus backed up only in the up-to 50 generations
range.
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Figure 7.4: Comparing genotypes with 1, respectively 4 trees
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7.2.2 Number of legs: 4 vs. 6

Another probed parameter of the robots was the number of used legs. The robots R1 and
R2 had their torso long enough that they could receive an extra pair of legs in the middle.
An example is the robot R1 depicted with only 4 legs in Figure 7.1, but with the extra pair,
having a total of 6 legs in Figure 7.3.

The gist was that the extra pair of legs might work as an assistant pair for the front and
rear pairs. The 6-legged robots could theoretically develop a more complex motion pattern
and solve the locomotion problem more efficiently.

The results can be seen in Figure 7.5 (midLegs = 0 marks robots with 4 legs, midLegs =
1 marks robots with 6 legs). It seems that up to the 15th generation, both the R1 and R2
developed better with the extra pair of legs (Figure 7.4a). However, by the 20th generation,
the 4-leg versions caught up to them and from then on, the fitness was very similar. Thus
the extra pair of legs really did help the robot, especially in the beginning phase of roughly
developed individuals.

When looking at the maximum depth parameter in Figure 7.4b, we see that the robot
R1 was forced to develop significantly larger trees in the 4-leg version. This fact corresponds
with the fitness, meaning that the lower the fitness, the larger trees are explored by genetic
programming (with the help of bloat control, forcing the trees to grow gradually rather than
randomly). Robot R2 had very similar results for both 4 and 6-leg versions. This might be
caused by R2’s torso being only 5 cubes long as opposed to R1 that has 7 cubes across. The
leg pairs are much closer in R1, enabling more frequent collisions between them - stripping
the robot of its advantage. This would explain the similarity between the fitness of the two
versions.
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Figure 7.5: Comparing robots with 4, respectively 6 legs
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7.2.3 Simulation sampling frequency

One underestimated issue came with the choice of the simulation sampling frequency
(thus the length of one time step). The sample time was the time quantum of the simulator.
In other words, how often the robot got chance to recalculate its outputs and send that
change to the simulator. The neural networks, being discreet time-based, were very sensitive
to this parameter since the output of the network at time t depended on the state of the
network at time t − 1. The problems are closely described in Section 7.3.2. We will only
look at the results at the moment.

The fitnesses and depths of the experimented robots are depicted in Figure 7.6. We
compared two sample times: one being 0.5s (2 Hz) and the other 0.0125s (80 Hz). Here we
really stumbled on something serious - robots with the higher refresh frequency performed
drastically worse than those only being able to refresh their outputs twice per second (Fig-
ure 7.6a). The causes and implications of this are discussed later in length.

As can be seen in Figure 7.6b, the lousy fitness also caused the genetic programming to
search for solutions in larger space - increasing the depth of the genotype. Here we can clearly
see that genetic programming was trying to solve the problem the right way - looking into
more complex space after it searched the simpler one. Unfortunately, not enough generations
were given to the experiment yet. And even if it were, no guarantees are given that a decent
solution would be found. This problem will be a subject of our future research.
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Figure 7.6: Comparing robots ran on sample time 0.5s, respectively 0.0125s

7.2.4 Robot topologies

The last comparison made with our experimental results is the one of the robot topology.
We wanted to find out which of the predefined robots would perform the best. They each
have a slightly different size and joint rotation axes.
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We are using a right-handed Cartesian coordinate system, with the y axis pointing into
the screen. The legs of each robot are be represented by their joints’ rotation axes. All the
robots have a torso along the y axis, legs pointing in the x axis.

• R0 - torso: 5 cubes, leg: 2 cubes (y, y)

• R1 - torso: 7 cubes, leg: 3 cubes (y, z, y)

• R2 - torso: 5 cubes, leg: 3 cubes (z, y, y)

The robots all performed decently well, with R0 being obviously the worst one. It only
had legs consisting of two cubes and moved in the direction of the x axis (Figure 7.7a).
However, it also kept the lowest maximum depth of all robots (Figure 7.7b), making it very
efficient with the performance / depth ratio. The performance of R1 and R2 was again very
similar, with R1 being the slight winner. It also required the largest trees for its genotype.
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Figure 7.7: Comparing robot topologies: R0, R1 and R2

7.3 Issues encountered during testing

The version of HyperGP algorithm described so far has been implemented with the
description of HyperNEAT in [32, 9] and Genetic Programming. No further knowledge about
the shortcomings in implementing a Hyper-* algorithm was known at the time. However,
after the main part of the HyperGP algorithm in the cic framework was done, a couple of
issues surfaced and needed to be taken care of. The problems are described in the following
section.

7.3.1 Genotype: forest instead of a tree

The issue of insufficient complexity space for the genotype seemed to be a problem. In
theory, one function (genotype in our case), with the neuron coordinates as inputs (together
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with certain constants) could only hardly encode the whole complexity of a neural network
to produce sensible outputs. Other sources also used more than one function to generate
neural network synaptic weights [6] with HyperGP. In addition, the original CPPN neural
network, proposed in the original HyperNEAT [32], has multiple outputs where each is used
for different type of synaptic weights. However, our CPPF (function) only has one output,
forcing the function to encode the weight of all the different synapses into one structure.
CPPN might theoretically dedicate parts of the network to certain synapses which it shows
in the dedicated output. CPPF does not possess that option. This fact led us to try to
generalize the genotype to not take only a single tree, but use a forest (a vector of trees)
instead and simulate the expanded storage and computational ability of a neural network in
multiple trees.

Modifications of the genetic operators (mutation, crossover) were necessary in order to
make them work efficiently with this change. The simplest way seemed to use the forest only
as a wrapper and container for the trees, but applying a genetic operator would only mean
to apply the operator to all the contained trees. Thus, ordered collection of trees was needed
as the storage for the trees. When mutation was applied to the forest, it was just applied to
the first tree. A new instance of the operator would be applied to the second tree and so on.
With crossover, the first trees in both the forests were crossed-over, then the second ones
and so on. This way, the trees in the forest worked together to create the neural network
(phenotype), but were in fact independent of each other during genetic modifications.

7.3.2 Neural network outputs

7.3.2.1 High-frequency oscillations

After initial tests were undertaken, desired results were far from being reached. It seemed
that certain individuals were receiving a high fitness value in the simulator, but were not
really high-quality under our terms. Some of these individuals, when observed in the visual
mode of the simulator, achieved relocation of their bodies not by walking, strictly speaking,
but rather by shaking their joints. These robots usually did not elevate their body from the
ground, but just quickly moved the joints up and down. These high-frequency oscillations
dominated the first, undeveloped populations in their early stage. Unfortunately, their suc-
cess meant the gradual removal of all other solutions from the population set. However, the
progress of these individuals seldom ended after the 10th generation, meaning that even if
simulation was run for 100 generations, no more improvements were discovered - thus ruining
the experiment.

This particular issue was difficult to find. The fast movements could be observed in the
visual simulations, but reasoning went in a way that the high-frequency oscillations were
just a feature of low-fitness individuals and that these solutions would disappear from the
population naturally. After spending some time on improving the HyperGP implementation,
improvements did not come, which forced us to add some other means of introspection into
the cic framework.
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The MATLAB integration came in useful once again. It enabled us to send the output
data of the neural network right into the MATLAB instance to get it plotted out. After
seeing a couple of plots, such as the one in Figure 7.8, we recognized the issue.

Clearly we needed a way to slow down these radical changes in every consecutive step
of the neural output. Decision was made to contact Jeff Clune, the co-author of [9, 36, 18].
He advised us to look into [36, 18], when encountered the exact same problem, providing us
with a hint that this might have been solved before. Eventually, solution recorded in [18]
was implemented. In this case, a down-sampling was used by averaging consecutive n steps.
Meaning if the neural outputs were computed with a frequency of 100 Hz and we used 4
averaging steps, the corrected output would have a frequency of 25 Hz. That enabled us to
get from original outputs shown in Figure 7.8 to somehow corrected ones in Figure 7.9 or
even more in Figure 7.10.
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Figure 7.8: Neural network outputs: High frequency oscillations - original (no averaging)

However, even with this tweak, we could not achieve significant increase in fitness. One
possibility is that due to the longer time requirement for longer experiments (days), we did
not run the experiment for long enough time to see the difference. Additional experiments
will be performed and presented if any notable improvements come. The plan is to also im-
plement the punishment of high-frequency oscillating individuals by decreasing their fitness.
Unfortunately, we did not have time to implement that in the original version.

One more possible solution of this problem would be to change the type of neurons. Right
now, with the classic ANN, signal inputs are added and applied to an activation function
(hyperbolic tangent in our case). Meaning that output values can change drastically in every
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Figure 7.9: Neural network outputs: High frequency oscillations - averaging 2 consecutive
samples

time step. However, for simulating real-life objects, such as robot legs, an integrating neuron
could be more efficient. Real-life objects cannot move infinitely fast, they only apply force
and gradually change their position. With an integrating neuron, the activation function
would not provide an absolute value of the neuron for the current time step, but would
rather provide a change in the current value. Thus the absolute output value of a neuron
at time t would be the sum of the absolute value at time t−1 and the relative value at time t.

I represents the set of input synapses.

rel[t] = tanh
∑
i∈I

signal(i) (7.2)

abs[t] = abs[t− 1] + rel[t] (7.3)

This tweak would forbid the neurons from outputting unreal updated positions for real-
life objects. This, as well, is a subject of future research.

7.3.2.2 Neuron output saturation

Another issue that can be seen in Figure 7.8 is the output saturation. Since the activation
function of the hidden and output neurons is hyperbolic tangent (Figure 7.11), meaning that
even very large inputs are transferred into outputs between -1 and 1. However, the farther
the inputs are from 0, the less difference on the input gets transferred to the output.
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Figure 7.10: Neural network outputs: High frequency oscillations - averaging 4 consecutive
samples

Figure 7.8 shows how when the values get very close to +1 and -1, respectively, showing
huge inputs to the neurons. The neural network is best functional when it operates in the
lower and middle range of the output (taken on a 0 to 1 basis). Our future efforts should
focus on enforcing lower input signals. One way to do that is to reduce the number of input
connections of each neuron, because during our testing, there were neural networks with
30 - 40 inputs, however better would be networks with neurons having less than 10 input
connections. This will be a subject of future research.
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Figure 7.11: Hyperbolic tangent
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Conclusion

In an attempt to push robot locomotion methods further, a research has been performed
to find a suitable approach to solving the problem. One method, called HyperNEAT seemed
to possess most of the desired properties (symmetry exploitation, indirect encoding, etc.)
which made us consider it. A modification, called HyperGP was used in our work instead.
The hyper-encoding of HyperNEAT was preserved, but NEAT got replaced by genetic pro-
gramming. This change greatly simplified the implementation and had previously yielded
even better results than HyperNEAT [6].

The considerable insight supplied by our intense work on HyperGP provided us with a
great deal of motivation to continue research in this direction. Due to time constraints, only
a subset of all possible HyperGP configurations were run in the experiments. However that
did not prevent HyperGP from successfully developing neural networks for robot locomotion
control, even given the limited size of the population and number of generations.

We remain confident that with extra effort put into solving the mentioned shortcomings,
we could bring great improvements of the HyperGP performance. Since both indirect en-
coding and genetic programming are inspired by biology, we believe there is some merit in
putting more time into improving these methods for computer applications. This work was
the first attempt to use HyperGP with robot locomotion and it partially succeeded. Thus
the effort should not end here, rather on the contrary.

As a side effect of implementing the digital environment for the experiments, an algorithm-
testing framework called cic was developed1. Written in modern C++ and using the best-
of-breed compiler and language libraries, it is able to take a full advantage of the hardware it
runs on. Running on any number of processor cores and having full control over the memory
with C++, cic has a huge potential to perform much faster than alternative frameworks,
which are based on high-level garbage-collecting languages, such as Java. Already showing
how two types of experiments could easily run in the framework, additional improvements

1The source code to the cic framework, together with the hyperGP and symreg experiments is available
at [10] and released under the Lesser GPL licence [1].

42
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to cic’s codebase are in the pipeline.

In addition, cic has been offered to the scientific community as an open-source project,
enabling anyone to use it for their experiments. The goal of making cic widely useful has
been kept in our minds from the beginning, influencing the block-like design of the inside
workings. Any alternative algorithm can be tested in the same environment by merely plug-
ging in new blocks. We have a vision of what cic could become if guided correctly and we see
many experimenters wanting to test their algorithms without the need to write thousands
of lines of code. The MATLAB integration, xml serialization and more is built-in for anyone
to use. We believe researchers should spend more time on improving their ideas and less on
battling programming bugs.

Overall, this work discovered the strengths and weaknesses of HyperGP when applied
to the robot locomotion problem. Many improvements have been suggested and will be
tested in the future. Experiments have shown that HyperGP is suitable for developing
robot locomotion solutions. In the future, the cic framework should enable us to improve
the HyperGP algorithm and overcome the issues we encountered so far. Moving HyperGP
forward should help us explore the true capabilities of computer optimization and find its
new, truly useful applications.
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Appendix A

Important terms and abbreviations

Genotype genetic material of a robot, can always be decoded into one or more phenotypes

Phenotype expression (manifestation) of genotype in particular environment

ANN artificial neural network (or just neural network), mathematical model inspired by
biological neural networks

NEAT Neuro-Evolution of Augmented Topologies, an algorithm for evolving neural net-
works

HyperNEAT NEAT algorithm employing hypercube encoding

GP genetic programming, a genetic algorithm using tree-like structures as the genotype

HyperGP GP employing hypercube encoding, first named in [6]

EANT2 Evolutionary Acquisition of Neural Topologies, Version 2

CPPN, CPPF Compositional Pattern Producing Network / Function, the genotype of
HyperNEAT / HyperGP

GCD Grand Central Dispatch - multithread control system for C++ developed by Apple,
Inc.

Clang/LLVM C/C++/Objective-C compiler developed by Apple, Inc.

PTC1 Probabilistic Tree-Creation, version 1, a tree-generation method with extra control
over parameters of generated trees
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Appendix B

Experimental setup

The detailed setup of experiments mentioned in Chapter 7. Each key has its desired state
saved in an xml file with appendix _settings.xml. Experiments used this file to set the desired
state for the run. The settings file had several major categories, namely GP for genetic
programming, Simulator for simulation-specific settings, Control for more implementation-
specific data, BloatControl for setting up the Bloat Control block and Neural for global
variables used in neural networks.

Table B.1: Experiment parameters

Parameter key Used value(s) Description
GP
defaultFitness 1.0 The default fitness value of in-

dividuals before they are eval-
uated.

generatedPopulationSize 50 The number of individuals in
each generation.

expectedGeneratedTreeSize 30 Tree generation parameter
mentioned in Section 6.3.4.4.

maximumGeneratedTreeDepth 6 Tree generation parameter,
maximum allowed depth of
generated trees.

minimumGeneratedTreeDepth 2 Tree generation parameter,
minimum allowed depth of
generated trees.

terminalVariableCount 4 Number of tree variables in
terminals. HyperGP used
[x1, y1, x2, y2].

functionCount 5 Number of tree functions in
nodes. HyperGP used [x +
y, x ∗ y, atan(x), sin(x), e−x2 ].
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functionProbabilities all = 1.0 Relative occurencies of func-
tions in trees (for PTC1), Sec-
tion 6.3.4.4.

functionProbabilities all = 1.0 Relative occurencies of func-
tions in trees (for PTC1), Sec-
tion 6.3.4.4.

terminalConstsCount 2 Number of extra terminals
- constant numbers for tree
generation. HyperGP used
[1.0,−1.0].

tournament_size 5 Number of individuals in
Tournament selection used in
GP.

selection_type 0, 1 GP selection type. 0: Tourna-
ment, 1: Roulette.

tournamentSelection 1 If two individuals have the
same fitness, select the smaller
one (use lexicographic parsi-
mony pressure).

numberOfTreesInForestGenotype 1, 4 Described in detail in Sec-
tion 7.3.1.

preventDuplicates 1 Generated trees are guaran-
teed to be unique.

Simulator
sample_from 0.0 Simulation start time.
sample_step 0.5s, 0.0125s The simulator time quan-

tum. Marks re-calculation fre-
quency of new outputs. Dis-
cussed in Section 7.2.3.

sample_to 15.0 Simulation stop time.
delayed_start 2.0 Mark the robot position with

a delay, mentioned in Sec-
tion 7.1.2.

robot_type 0, 1, 2 Robot type, as described in
Section 7.1.1.

extraTimeStepDivider 1, 20 For cases with low refresh fre-
quency, simulation still had to
run faster to generate sensi-
ble results. This parameter
marked how much faster sim-
ulation should be computed
than the frequency of output
recalculations.



APPENDIX B. EXPERIMENTAL SETUP 50

generatePovrayFiles 0, 1 Would be turned on if we
wanted to generate files to ren-
der video from the simulation.

Control
maximumIterations 50 The maximum number of gen-

erations / iterations.
minimumFitness 50 The minimum fitness reached

to stop the experiment prema-
turely. Never used with Hy-
perGP.

populationXmlLoadFrom $path of population xml$ Input population into the ex-
periment if we did not want
a new population generated
but continue with a developed
one.

useMatlabPlot 0, 1 Turned on if we wanted to
generate plots with statistics
from the experiment.

isAutonomousExperiment 0, 1 Turned on to never show
the simulator visually (which
pauses the experiment).

BloatControl
useBloatControl 1 Whether bloat control should

be used with the experiment.
Discussed in Section 5.2.

bloatControlVariant 0, 1, 2 Version of Dynamics Limit
bloat control. 0: simple, 1:
heavy, 2: very heavy.

Neural
synopsisThreshold 0.2 Minimum synapsis absolute

value to be present in the sub-
strate (otherwise not added).

useMiddleLegs 0, 1 Whether robot should use its
4 or 6-leg variant.

sampleAverageCount 1, 4 Consecutive sample averaging
- explained in Section 7.3.2.1.



Appendix C

Attached CD content

The printed version of this work is accompanied by a CD.

README.md File describing the CD content.

cic_2013may20.zip Snapshot of the cic source code.

dvorsky_bt.pdf The text of the bachelor thesis.

videos/ Folder containing several rendered videos of robots from the testing phase.

51


	Introduction
	Robot locomotion problem and existing methods
	EANT2 - Evolutionary Acquisition of Neural Topologies, Version 2
	CPG - Complex motor patter generation (Rodney)
	HyperNEAT - Neuro-Evolution of Augmented Topologies employing hypercube-based encoding

	HyperNEAT and Genetic Programming
	Generative encoding
	Genetic operators
	Phenotype: substrate
	Genotype: CPPN
	Genetic Programming (GP)

	Robotic simulator Sim
	Proposed HyperGP approach
	HyperGP
	Initial population
	Selection
	Mutation
	Recombination
	Evaluation
	Termination condition

	Bloat control
	Heavy variant
	Handling illegals
	Very Heavy variant


	Implementation
	Programming environment
	Programming language
	Compiler
	Platform

	The cic framework
	Experiment: Symbolic Regression - cic::genetic::symreg
	Experiment: HyperGP - cic::genetic::hyperGP

	cic featured classes
	cic::genetic::Individual
	cic::genetic::Population
	cic::tree::Tree
	Node
	Tree

	Tree Generator
	Grow
	Full
	Ramped Half-and-Half
	PTC1

	cic::nn::Network

	Tools and libraries
	libxml2
	MATLAB
	Sim
	Other tools


	Testing
	Experimental setup
	Tested robot topologies
	Fitness

	Experimental results
	Genotype size: 1 vs. 4 trees
	Number of legs: 4 vs. 6
	Simulation sampling frequency
	Robot topologies

	Issues encountered during testing
	Genotype: forest instead of a tree
	Neural network outputs
	High-frequency oscillations
	Neuron output saturation



	Conclusion
	Important terms and abbreviations
	Experimental setup
	Attached CD content

